
Accelerating WebP Lossless Encoding
Kevin Geng and Emma Liu, School of Computer Science

15-418: Parallel Computer Architecture and Programming
 Carnegie Mellon University

Abstract
We implemented one of the stages of the WebP image 
encoding pipeline on NVIDIA GPUs, to take advantage of 
the parallelism offered by CUDA. We then compared the 
modified pipeline’s performance on GHC Cluster machines 
and the Pittsburgh Supercomputing Cluster Bridges 
machines, versus the sequential C implementation.

Results

Experimental Setup
To test our program, we inserted timing code in cwebp-cuda to compare 
the execution times of the C and CUDA implementations, and wrote a 
script to run cwebp and cwebp-cuda to obtain timings. We also noted 
the compressed image sizes produced by both implementations.

Breakdown of Execution Timing
To determine which parts of the code merited further speedup, we 
estimated the amount of time each helper function in our kernel took by 
subtracting the time when each function was commented out.

Background
The WebP image format was developed by Google as an 
alternative to the existing JPEG and PNG formats. For our 
project, we decided to focus on the encoding pipeline of 
the lossless compression algorithm. This uses several 
heuristics, and tests multiple parameter values to 
determine which will result in the best compression.

There are four transforms that the WebP lossless 
algorithm can apply to image data to reduce their entropy 
to allow for better compression:

We targeted the Color Transform, which tries to 
decorrelates the RGB values by shifting the red and blue 
values based on the green values of each pixel.

Discussion
Both medium and large sizes of images experienced 
comparable speedups. However, we notice only a weak 
correlation between the speedup and the size of the data. 
Further testing could determine the efficacy of our 
algorithms on smaller-sized images, to determine the 
image sizes for which we can yield a noticeable speedup.

It's worth exploring what factors limited the speedup we 
could obtain. Though the overhead of copying memory 
was a concern early in the project, that cost has been 
amortized due to the use of only one large kernel.

In our kernel, CombinedShannonEntropy still takes a 
large proportion of execution time, even after parallelizing 
the reduction step, perhaps due to log2. This could be 
improved further: for instance, libwebp uses a lookup 
table for small integer arguments.

Beyond this, the main limitation for the speedup is likely 
the miscellaneous code that needs to be executed 
sequentially, requiring synchronization between threads. 
For example, earlier in our project, we explored 
parallelizing the hill-climbing search performed by 
GetBestGreenToRed to determine the best value of the 
green_to_red parameter.

● Predictor Transform
● Color Transform

● Subtract Green
● Color Indexing

Approach
We began with the existing libwebp library, which already 
took advantage of vectorized operations and some 
multithreading. Thus, we decided to accelerate the color 
transform with CUDA.

To amortize the overhead of copying memory, we used a 
single kernel for the ColorSpaceTransform function. 
WebP processes an image in 32x32 tiles, so we used this 
as our CUDA block size.

To implement the transform operations, we mapped  
pixels to their transformed values using CUDA threads, 
used reduction operations from the CUB libraries to 
compute entropy, and performed atomic addition to 
update global histogram counts.

Analysis
Throughout our project, we measured the performance of various 
portions of the encoding pipeline in wall-clock time (milliseconds). We 
compared the performance of the original C implementation, which 
were used both multithreading and vectorized subroutines (SSE on the 
machines we used) to speed up its execution.

The following graph depicts the speedup experienced by the CUDA 
implementation of ColorSpaceTransform compared to the reference 
C implementation. We  see that the speedup observed was on 
magnitude of 5-10x for the GHC machines, while speedup was on 
magnitude of 10-20x for the PSC machines (twice that of GHC).
Notably, starry_night_crop experienced nearly 30x speedup on PSC!

We observed only a weak correlation between the speedup and the 
size of the data (the image size, in megapixels). This is seen below.

Another metric we measured was the compression ratio (compression 
power), the ratio between the original uncompressed size of an image 
and its compressed size. This can be alternatively be studied via a 
comparison between the bytes-per-pixel values, the number of bits 
needed to encode each pixel. We saw that the bpp of the sequential 
and CUDA implementations was nearly equivalent, which indicates that 
the compression ratio between the sizes of the images produced by the 
CUDA and C implementations was nearly one-to-one: the CUDA 
implementation is comparable with the fully-C implementation.

References
"Compression Techniques  |  Webp". Google Developers, 2019, 
https://developers.google.com/speed/webp/docs/compression.

"RFC 6386 - VP8 Data Format And Decoding Guide". Datatracker.Ietf.Org, 
2019, https://datatracker.ietf.org/doc/rfc6386/.

Conclusion
We analyzed the performance of the encoding pipeline in 
the WebP lossless compression algorithm and then 
implemented several parallelized image transformation 
routines to be done on NVIDIA GPUs in CUDA. By 
addressing previously serialized portions of the helper 
routines, offloading control flow to the GPU, and reducing 
the amount of data transfer overhead by targeting 
higher-level functions, our approach  allowed us to gain 
great speedup (on order of 5x-25x speedup depending on 
machine) with nearly equivalent compression efficacy. 


