
Accelerating the WebP Encoding/Decoding Pipeline 
 

Kevin Geng and Emma Liu 
 

Project Page: https://emmaloool.github.io/15418-Final-Project/ 
 

Summary 
 
We implemented one of the stages of the WebP image encoding pipeline on NVIDIA GPUs, to take 
advantage of the parallelism offered by CUDA. To do so, we investigated the algorithms used by the 
reference implementation of WebP encoding and rewrote several versions of portions of the 
encoding pipeline to best take advantage of CUDA. We then compared the modified pipeline’s 
performance on both GHC Cluster machines and the Pittsburgh Supercomputing Cluster Bridges 
machines, versus the sequential C implementation. 
 

Background 
 
Image compression involves the reduction of image data without degrading the quality of its visual 
perception. It is a canonical problem in the intersection of computational photography and 
high-performance computing as it relates to fast computation of large datasets because of the 
redundant nature of image representation (i.e., pixels) among colors and similarity among pixels. 
There are two main categories of compression algorithms for images: lossless compression, which is 
able to recover the original image data with no loss of quality, and lossy compression, which 
sacrifices the possibility to exactly reconstruct of the image for smaller file sizes. 
 
Google’s WebP image formats for ARGB images come in these flavors. We decided to focus on the 
lossless compression algorithm for the scope of our project. Specifically, our efforts will be to 
parallelize the encoding stage of the pipeline, which involves computing heuristics and testing 
multiple parameters to find the ones that will compress the best. 
 
(We chose not to focus on the decoding pipeline, which would be relatively straightforward and 
therefore less interesting for parallelization.) 
 
Representation 
 
The input to the WebP encoding pipeline is an image, which can be thought of as a two-dimensional 
array of pixels visually, but interpreted as a one-dimensional stream of pixels. Each pixel is comprised 
of four component values: alpha, red, blue, and green. Components are represented by an 8-bit byte, 
defined as a uint8_t. Pixels are represented as a combination of these four components, and thus is 
represented by an unsigned 32-bit integer, defined as a uint32_t, where the alpha value occupies 
the upper 24-31 bits, descending in representation such that the lower 0-7 bits are occupied by the 
blue component. Thus, images are represented as an uint32_t array.  

https://emmaloool.github.io/15418-Final-Project/


 
The transformations operates on 32 x 32 tiles of pixels, which is the granularity for determining 
different transform settings, and is also used when outputting data.  
 
Operations 
 
There are several stages the WebP encoding pipeline: 
 

1) Reading and interpreting the input. The input image is read as a stream of bytes in 
least-significant byte ordering, interpreted as a uint32_t, as mentioned above.  
 

2) Undergoing transformations. The lossless compression encoding pipeline makes use of the 
 entropy encoding scheme, which compresses original image data to a smaller representation.  
Under this encoding scheme, images undergo transformations, or reversible manipulations of 
image data, which are aware of spatial/color correlations between the pixels in the image. 
These transformations attempt to reduce the Shannon entropy of the image data, in order to 
allow it to be better compressed by the encoding stage of the pipeline. 
 
There are four types of transformation used in the WebP pipeline: 

● Predictor Transform: The predictor transform takes advantage of the correlation 
between neighboring pixels, where pixels are predicted based previously-considered 
pixels. The transformation data stored is the residual value between the actual pixel 
value and the predicted value.  

● Color Transform: The color transform decorrelates the red, green, and blue values of 
each pixel by keeping the original green value, transforming the red value based on 
the green and blue values, and then similarly transforming the blue value based on the 
green and red values. These values are stored in a new structure, called a 
ColorTransformElement, as depicted in Figure 1. 

 

 
Figure 1: ColorTransformElement struct 

 
In the color transform, a color transform delta value is found. To apply the 
transformation, the transform deltas between the fields are added to their 
corresponding original values. 

● Subtract Green: The subtract green transform simply subtracts the green value from 
the blue and red values for each pixel, and does not return any transform data (it is 
directly applied to the image), unlike the other transformations. 



● Color Indexing: For images with an abundance of similar pixel values, the color 
indexing transform can be used to efficiently create a color index array (array of 
indices with similar pixel values) and substitute pixel values by the array of indices. 

 
Each transform operates on the tile level, meaning that it divides the image into tiles (blocks) 
and performs the transformation on each block. Therefore, the block size can be viewed to be 
equivalent to the tile size. The final transform data for compression is chosen/generated based 
on the combination of transformation types that are the best to reduce the Shannon entropy 
for a particular image. 
 

3) Encoding. This stage of the pipeline involves encoding the raw image data losslessly using 
Huffman codes, and LZ77 prefix coding. Since these have both been attempted before on 
CUDA, we decided not to focus our efforts on this area. 

 
Based on our analysis of each of these elements of the pipeline, we determined that the image 
transforms would provide the most interesting opportunity for parallelization, since the other parts of 
the pipeline are more focused on the specifics of the image format itself rather than the underlying 
computations. 
 
There are significant dependencies between tiles. The most significant dependency is that the 
original code updates a histogram of pixel values after processing each tile. Since the sequential 
implementation processes tiles in row-major order, each tile has a dependency on the previous tile in 
that order. However, the histogram is only used as a heuristic to determine the parameters of the 
current tile that will produce the best compression; it is not crucial to correctness. 
 
Additionally, another dependency between tiles is on the color transform parameters of the tile 
immediately above and to the left of the current tile (prev_y and prev_x respectively). These are used 
to bias the transform parameters to be able to take advantage of spatial locality later in the encoding 
process. Fortunately, this dependency only serves as a heuristic for better compression as well, and 
should not affect the correctness of the output. 
 
Other than these dependencies, however, the computation is more or less data-parallel between 
different image tiles, which suggests that the tiles might be able to be computed in parallel if those 
dependencies are resolved. In addition, inside of each block, many computations per-pixel are also 
data-parallel and exhibit locality in a way that may be amenable to SIMD or CUDA execution. As 
mentioned later, the existing code in libwebp already takes advantage of this property on several 
architectures, including SSE4.1 on the machines we tested. 
 

Approach 
 
Resources 
 
Technologies 
 



Our project is based on the open-source libwebp encoding and decoding library for the WebP 
image format. The library and format were developed by the WebM Project, sponsored by Google. 
The project homepage is located at https://developers.google.com/speed/webp. This library is 
implemented in ANSI C. 
 
We were specifically interested in building and using the cwebp encoder application. Since libwebp 
already contains several working C implementations, we used one of them as our baseline 
implementation. Note that the hardware abstraction layer chooses a C version of the implementation 
at runtime; specifically, the one that was chosen to suit our machines’ hardware was the SSE version, 
which makes use of multithreaded CPU code with vectorized subroutines.  
 
In light of this, we chose not to reimplement some parts of the pipeline, as the working versions are 
already highly performant. Our efforts were focused on investigating potential opportunities for 
parallelism throughout the pipeline and implementing CUDA versions for some of these portions. 
 
Images 
 
Up to the project checkpoint, we primarily used two images for testing: mitski.jpg, a medium-sized 
image, and starry_night_cropped.jpg, a significantly larger image. After the checkpoint, we collected 
a large set of test images, with variation in dimensions (size), color representation, and compression 
quality (mix of lossless and lossy). Note that we chose roughly equivalent-sized images for the 
small/medium set of test images. We did not choose significantly smaller images, as we recognized 
that our parallelization efforts would perform sufficiently poorly on smaller images due to the lack of 
parallelization opportunities associated with smaller data samples. 
 
Because cwebp chooses a subset of the four transformations to perform on an image at runtime, and 
because we were isolating our efforts to optimize the Color Space Transformation pipeline, we 
performed an initial batch run of cwebp on the larger set of images to identify those that actually use 
ColorSpaceTransform, tossing out the rest of the images that didn’t apply.  
 
Figure 2 depicts the subset of images we used for further analysis.  
 
 

IMAGE NAME  DIMENSIONS 
anil.jpg  2,135 x 2,135 

apple_holiday.png  2,880 x 1,512 
apples.jpg  1,600 x 1,066 

bon_appetit.png  2,864 x 1,460 
carbon_emissions.png  1,240 x 1,754 

corgi.jpeg  2,967 x 1,978 
crow.jpg  1,250 x 1,000 

google_notes.png  1,520 x 760 
iphone_11.png  2,876 x 1,550 

layout.png  1,520 x 760 
mitski.png  2,876 x 1,572 

 
IMAGE NAME  DIMENSIONS 
brisbane.jpg  15,104 x 3,328 

commencement.jpg  15,104 x 3,328 
inauguration.jpg  7,168 x 3,584 

machu.jpg  6,656 x 2,560 
paris.jpg  8,704 x 1,536 

pittsburgh.jpg  8,960 x 2,304 
yosemite.jpg  10,752 x 4,096 

starry_night_cropped.jpg  15,000 × 11,878 
 
 

https://developers.google.com/speed/webp
http://www.cs.cmu.edu/~aada/
https://www.apple.com/
http://danielcoyle.com/wp-content/uploads/apples.jpg
https://www.bonappetit.com/
https://www.cbc.ca/news/technology/carbon-pollution-increase-1.4934096
https://en.wikipedia.org/wiki/Pembroke_Welsh_Corgi#/media/File:Welchcorgipembroke.JPG
https://4czlih24wsr8kyn7z3byy9g1-wpengine.netdna-ssl.com/wp-content/uploads/2019/02/15352222_web1_Mabel-Dec-19-18.jpg
https://material.io/design/navigation/understanding-navigation.html
https://www.apple.com/iphone-11/
https://material.io/design/layout/responsive-layout-grid.html#columns-gutters-margins
https://www.youtube.com/watch?v=wjjZsx4zWOA
http://gigapan.com/gigapans/52418
http://gigapan.com/gigapans/49737
http://www.gigapan.com/gigapans/15374
http://www.gigapan.com/gigapans/116906
http://www.gigapan.com/gigapans/136974
http://gigapan.com/gigapans/166353
http://www.gigapan.com/gigapans/124202
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg


noise.png  2,550 x 1,650 
ohqueue.png  2,880 x 1,568 

sethg.jpg  654 × 971 
sf.jpg  1,224 x 918 

siamese.jpg  3,840 x 2,400 
twinpeaks.jpg  3,976 x 2,652 

va_districting.tif  2,240 x 1,010 
zip.png  2,064 x 1,528   

 
Figure 2: Images used for testing. Larger images are highlighted in light blue. 

 
All "large" images with the exception of starry_night_crop were GigaPan photos, downloaded 
using the Python script at https://github.com/DeniR/Gigapan-Downloader-and-stitcher at the largest 
resolution possible with the script, and were converted to the jpg format (to avoid exceeding AFS 
quota). Credit goes to photographers Chris Powell, Carnegie Mellon, David Bergman, Jeff Cremer, 
Ronnie Miranda, James Albright, and Grant Meyers. 
 
The starry_night_crop image is a high-quality image of Vincent van Gogh's The Starry Night painting, 
currently located in the Museum of Modern Art, and captured by Google Cultural Institute. The image 
is in the public domain, since the work dates from 1889. 
 
Machines 
 
We believe that GPUs provide the best platform for studying image compression. Existing code for 
encoding and decoding images is written for and optimized for CPU workloads. However, the 
compression of a single image is usually not significant enough to benefit from parallelization over 
multiple machines. Using GPU technology strikes the perfect balance between efficiency in that it can 
speed up image encoding / decoding by taking advantage of parallelism, and practicality in that it 
doesn’t require the use of a compute cluster for fast and efficient operations. 
 
Therefore, we will be targeting both the GHC Cluster and Pittsburgh Supercomputing Center (PSC) 
Bridges machines, in order to include some evaluation about the efficacy of their GPUs on our 
workloads. The specifications for the machines are depicted in Figure 3. 
 

  GHC Cluster Machines  PSC Bridges (RSM-GPU / GPU-small) Machines 

CPU  Intel Xeon E5-1660 v4  Intel Broadwell E5-2683 v4 (x2) 

RAM  32 GB  128 GB 

GPU  NVIDIA GeForce GTX 1080 
NVIDIA Quadro K620 (unused) 

NVIDIA Tesla P100 
NVIDIA Tesla P100 (unused) 

 
Figure 3: Machine Specifications for GHC Cluster/PSC Bridges 

 
The interconnect bandwidth of the Tesla P100 has a theoretical maximum of 32 GB/s, whereas the 
interconnect bandwidth of the GeForce GTX 1080 has a theoretical maximum of 16 GB/s; both are 
limited by the speed of their respective PCIe bus implementations. 

https://www.ccohs.ca/products/posters/noise/
https://cmu.ohqueue.com/#/
https://istcolloq.gsfc.nasa.gov/content/spring-2006-colloquium-series-seth-goldstein
https://www.trover.com/d/1ud38-sausalito-california
https://besthqwallpapers.com/download/original/42649
https://www.flickr.com/photos/iamahaque/33220830311
https://en.wikipedia.org/wiki/Virginia%27s_10th_congressional_district#/media/File:Virginia_US_Congressional_District_10_(since_2013).tif
http://www.cs.cmu.edu/~./213/lectures/01-overview.pdf
http://gigapan.com/
https://github.com/DeniR/Gigapan-Downloader-and-stitcher


 
Mapping the Problem 
 
Because the image tile size is 32 x 32 pixels, which is a size supported by a CUDA block, we decided 
to fix this size as the CUDA block size. This would allow us to easily synchronize all threads in the 
block; make it possible advantage of block-level memory specific to a tile; and possibly use one warp 
for each row of the tile, which could be useful for warp-level operations in the future. However, this 
does somewhat constrain our implementation, since 32x32 is a relatively large CUDA block size, and 
there is therefore less shared memory available per block than there might otherwise be. 
 
For our computation, block-level memory is particularly significant for the encoding pipeline, as it 
makes use of histograms (arrays of size 256, since each byte can take on values from 0 to 256) 
which compute data about the frequency of each pixel value in the block. Synchronizing an entire 
block is also particularly important, since the threads in a block need to cooperate to determine the 
optimal transform parameters for the entire block. If we were to choose a smaller CUDA block size, 
we would have significant difficulty in adapting our algorithm to perform this sort of computation for 
each WebP image tile. 

Iterations 
 
Part 1: Implementing helper functions in CUDA 
 
At the beginning of the project, after an initial scan of the code, we realized that the decoding 
pipeline has less interesting/relatively non-trivial opportunities for parallelization compared to the 
encoding scheme, so we pivoted to start from the encoding side to start.   
 
The existing libwebp library has an abstraction layer which allows for specialized implementations of 
certain functions to be used, depending on the hardware. For instance, the C code calls 
VP8LSubtractGreenFromBlueAndRed in order to perform a linear pass over image data that 
transforms the color stored in each pixel. However, VP8LSubtractGreenFromBlueAndRed is 
actually a function pointer. The value of the pointer can be changed from the default C 
implementation, SubtractGreenFromBlueAndRed_C, to run more specialized implementations 
that take advantage of the machine's hardware. For instance, on the GHC machines, it is changed to 
point to SubtractGreenFromBlueAndRed_SSE41, which performs the same operation while 
taking advantage of SSE4.1 vectorized instructions. 
 
Our initial thought was that we could take advantage of this existing abstraction layer. As such, we 
decided to implement several of those helper functions in CUDA, including writing a 
SubtractGreenFromBlueAndRed_CUDA function. We chose to do this because this could be done 
using the existing interface, and without significantly restructuring the code. This would also provide 
a good opportunity to test adding CUDA to the build system and make sure it is able to run properly. 
 



We were able to complete and verify the correctness of implementations for the following helper 
functions, which are all part of the lossless encoding scheme. (The VP8L prefix refers to lossless VP8 
compression.) 
 

● VP8LSubtractGreenFromBlueAndRed 
● VP8LTransformColor 
● VP8LCollectColorBlueTransforms 
● VP8LCollectColorRedTransforms 
● VP8LBundleColorMap 

 
We chose to implement these functions since they were relatively straightforward to write, and so 
they provided a good start for our project. We then chose to focus on timing two representative 
functions. As previously described, the SubtractGreenFromBlueAndRed function performs a 
transform across the entire image, so its runtime scales with the size of the image chosen. On the 
other hand, the CollectColorRedTransforms function operates on a single 32x32 tile, so its 
performance is invariant to the image size. The TransformColor function is similar, though it 
operates only on a 1x32 block. 
 
  Original  Plain C  CUDA  CUDA kernel 

SubtractGreenFromBlueAndRed 
Size 15000 x 11878 (starry_night) 

70 ms  83 ms  278 ms  0.043 ms 

SubtractGreenFromBlueAndRed 
Size 1277 x 1632 (mitski) 

1.3 ms  1.1ms  121 ms  0.032 ms 

TransformColor  0.4 µs  0.5 µs  205 µs  6.9 µs 
CollectColorRedTransforms  2.0 µs  2.5 µs  230 µs  8.2 µs 
 

Figure 4: Initial timings for C vs. CUDA implementations for lower-level transformations 
 

An explanation for the column titles in Figure 4: 
 

● "Original" refers to the function that would be run if the codebase were unchanged. Since the 
GHC clusters support hardware vectorization, the SSE2 or SSE4.1 implementations are used 
in this column. 

● "Plain C" refers to the C function that is used when no vectorization hardware is available. 
● "CUDA kernel" refers to the time taken to execute the CUDA kernel only, excluding the cost of 

the cudaMalloc and cudaMemcpy operations. 
 
For SubtractGreenFromBlueAndRed, if we examine the CUDA kernel alone, it runs orders of 
magnitude faster than the other implementations for all images. However, the function also incurs 
communication overhead in copying memory to and from the GPU. As a result, the overall time is 
orders of magnitude slower. As we learned in Assignment 2 in 15-418, this is inevitable, since the 
kernel only performs one linear pass over the data, resulting in low arithmetic intensity. Furthermore, 
since this function is only called once per program execution, there is no opportunity to amortize the 
overhead of copying memory across multiple computations. 
 



For TransformColor and CollectColorRedTransforms, though overhead is still an issue, it is worth 
noting that these functions are called on the same block multiple times with different parameters, in 
order to find the best transform parameters. Thus, if a higher-level function is moved into CUDA, the 
overhead of copying memory (and of launching a kernel) can be amortized over multiple function 
calls, increasing arithmetic intensity. 
 
At this point, we invested some time in more closely investigating the structure of the codebase. In 
the lossless encoding pipeline, we identified the following major components: 
 

● AnalyzeImage: Analyze the input image to determine the best encoding plan 
○ AnalyzeAndCreatePalette 
○ AnalyzeEntropy 

● EncodeStreamHook: Perform the transforms, and write the encoded image 
○ ApplySubtractGreen 
○ ApplyPredictFilter 
○ ApplyCrossColorFilter 
○ EncodeImageInternal 

 
Based on this investigation, we decided to focus our efforts on optimizing the 
VP8LColorSpaceTransform function. This is the primary subroutine of 
ApplyCrossColorFilter, which is one of four transforms that can be performed while encoding 
the image. This is also the function that calls TransformColor and 
CollectColorRedTransforms as helper functions. We chose this since we had already written 
CUDA kernels for those helper functions, and since we had already determined that they would be 
amenable to a speedup if parallelized at a higher level on the call stack. 
 
As such, we decided to add VP8LColorSpaceTransform function to the abstraction layer in order 
to support a CUDA implementation, even though no other high-level functions appeared in the 
abstraction layer. This is likely because the abstraction layer was designed to support vectorized 
operations on the CPU, with no need to consider communication overhead. However, in order to 
mitigate the overhead of copying to and from GPU memory repeatedly, we needed to do so in a 
higher level function, which is why we made this change. 

Part 2: Parallelizing parameter search for GetBestGreenToRed 

The previous approach for SubtractGreenFromBlueAndRed mapped one CUDA thread to each 
pixel to exploit pixel-level parallelism. However, because of the aforementioned dependencies 
between tile computations, we initially tried to process each tile in serial, but we soon realized that at 
this level, the level of parallelism we sought wasn’t achievable. If we mapped each tile to one CUDA 
block, then we would only be using one CUDA block at a time on the GPU. 
 
However, as we learned in 15-418, taking full advantage of CUDA requires scheduling multiple 
blocks to run simultaneously on the GPU. If we serialized processing each tile, then we would only be 
using one of the GPU's SMM cores at a time. 
 



So we decided to try to look for other avenues of parallelization. We noticed that the 
GetBestGreenToRed function attempts to use a basic iterative refinement / hill-climbing approach 
to determine the best value for the green_to_red transform parameter. Each possible parameter 
value was evaluated with the helper function GetPredictionCostCrossColorRed. (The 
GetBestGreenRedToBlue function does the same for the green_to_blue and red_to_blue 
parameters.) 
 
The number of steps taken by this process depended on the quality desired, but we will assume the 
maximum of 6 for simplicity. It used a delta parameter at each iteration to determine which direction 
to move in, which started at 64 and went down to 1, for a final parameter value ranging from -127 to 
127. Instead of using an iterative process, we hoped that we would be able to use CUDA to try all 
255 parameter values simultaneously, and thereby achieve a speedup. To do this, we would launch 
255 simultaneous CUDA blocks, each testing a 32x32 tile with a specific value of green_to_red. 
 
Unfortunately, when we tested the performance of this approach, we measured a 0.15x speedup 
relative to the original implementation, i.e. a more than 6x slowdown. We suspect this is because the 
increased amount of work that was performed negated the improved parallelism. Though there are 
other aspects we could have optimized further, we did not believe that this would be a reasonable 
avenue to pursue further work, given the large slowdown. 
 
Part 3: Creating one kernel for ColorSpaceTransform 
 
As a result, we decided to revisit the dependencies between tiles that we described earlier. We knew 
at this point that the linear dependencies between the tiles (dependency on the previous histogram 
value in row-major order) were merely used as a heuristic. As such, we decided that it would be 
possible to ignore this dependency while still accumulating these global histogram values in an 
approximate fashion, e.g. by using atomic addition without any serialization between tiles. Even with 
the change, we were able to maintain a comparable compression ratio. The downside of this was 
that the output produced by our program would no longer exactly match the output of the baseline 
implementation. (Later on, we also realized it might be possible to precompute these histogram 
values efficiently with a 2D prefix sum / scan, but we did not have time to pursue this.) 
 
The other dependency that we discussed was on the transform parameters of the tiles adjacent to 
the top and left of the current tile. This dependency is less strict than the other one, since each 
diagonal (from bottom-left to top-right) of image tiles can be processed in parallel, only depending on 
the results from the previous diagonal (to the top-left). As such, we might have been to continue 
without violating this dependency by performing (W + H) / 32 kernel launches, one for each diagonal. 
However, the first and last few kernel launches would only have a small number of blocks, limiting 
parallelism. As a result, we decided to simply ignore this dependency for the time being by inputting 
0 as the previous tiles' transform values. 
 
We realized at this point that we needed to make the computation as data-parallel as possible in 
order to obtain a speedup, which is why we decided to essentially ignore the two previously 
mentioned dependencies between tiles. In order to obtain the best speedup, we also decided to move 
the entire VP8LColorSpaceTransform function inside a CUDA kernel. The end result was that we 



simply performed one kernel launch for all tiles in an image, with each CUDA block mapping to one 
32x32 tile. 
 
While we did not yet have a speedup at this point, strictly speaking, the results were much more 
promising than they had previously been, with a slowdown of only around 40% compared to the 
baseline implementation. This was particularly notable since at this point, the majority of the CUDA 
kernel was still serialized within each block, with the exception of the 
CollectColorRedTransforms and CollectColorBlueTransforms functions. 
 
Next, we decided to parallelize the CombinedShannonEntropy function This function estimates the 
Shannon entropy of image data in the current block, taking into account the accumulated global 
histogram (which we had set to 0). Since it looped through 256 array values sequentially, and 
performed a logarithm operation on each value, it was relatively expensive. This was the most 
challenging computation to parallelize, since it required summing values across the CUDA block. 
 
We spent some time researching different strategies for block-level reduction in CUDA, and 
attempted to use some of the techniques we learned in 15-210 for reductions, but had difficulty in 
implementing them efficiently. (Warp-level reductions in CUDA can be very fast with specialized 
warp-level primitives such as __shfl_down_sync(), but we had difficulty in figuring out how to 
use them correctly.) Eventually, we decided to instead use primitives from the CUB library from 
NVIDIA Research to efficiently perform summations across the entire block. This allowed our code to 
finally achieve a speedup compared to the baseline implementation. 
 
Finally, we proceeded to parallelize more parts of our CUDA kernel for ColorSpaceTransform. For 
instance, we parallelized the CopyTileWithColorTransform helper function by assigning each 
thread in the block to perform a computation for each pixel. Additionally, we similarly parallelized 
global histogram updates in this fashion, with each CUDA thread performing atomic additions in 
parallel instead of sequentially. 
 
For testing purposes, however, we disabled the nondeterministic global histogram updates across 
tiles, since the compression parameters would change between runs. This made the compression 
ratio and performance difficult to measure, since the size of the output image would change each 
time! Removing this source of nondeterminism resulted in a slightly worse compression ratio, but no 
significant change in the program runtime. 
 

Results 
 
Experimental Setup 
 
As previously mentioned (and as detailed by size in Figure 2) , we chose a set of test images that 
could inform us of the quality of our parallelization attempts. After implementing 
ColorSpaceTransform and inserted timing code in cwebp-cuda to compare the execution times 
of the C and CUDA implementations, we wrote a script to run cwebp and cwebp-cuda to obtain 
timings. For reference, we ran cwebp (the full SSE-vectorized C implementation) once to obtain a 

http://nvlabs.github.io/cub/


reference compressed image (and corresponding size). Then we ran cwebp-cuda for a variable 
number of iterations. (For our purposes, we ran it 5 times for each image; the timings reported used 
the average of these timings.) Each time we ran cwebp-cuda, we also collected the compressed 
image it produced (and its size). We replicated this process for both sets of small/medium and large 
images, and then on both the GHC and PSC machines.  
 
Metrics and Data 
 
Throughout our project, we measured the performance of various portions of the encoding pipeline in 
wall-clock time (milliseconds). We added wrapper code to time the launch and execution of kernels 
and/or helper device routines in order to compare the performance of the original version of the 
functions, which were written primarily in C and used both multithreading and vectorized subroutines 
(SSE on the machines we used) to speed up its execution. 
 
After we moved on to iteration 2 and then nearly immediately to iteration 3, we finally arrived at the 
main portion of our project: our implementation of ColorSpaceTransform, which launches a 
single CUDA kernel utilizing several device helper routines. We performed timing analysis on 
ColorSpaceTransform for this final iteration, measuring its total execution We also included all 
time spent copying data to and from the GPU device in the total execution time.  
 
Figures 5 and 6 portrays the timing of the execution of the C and CUDA versions of 
ColorSpaceTransform (ColorSpaceTransform_C and ColorSpaceTransform_CUDA) on the 
GHC and PCS machines. We decided to partition the image set into two separate graphs for visual 
clarity, since the execution times of the larger images was much longer than the smaller image.  

 
Figure 5: Execution times of CUDA/C ColorSpaceTransform on GHC/PSC (small/medium images) 



 
Figure 6: Execution times of CUDA/C ColorSpaceTransform on GHC/PSC (large images) 

 
Based on these execution times for ColorSpaceTransform, Figures 7 and 8 depicts the table of 
speedup (C implementation time over CUDA implementation time) and a corresponding graph.  
 

 
IMAGE NAME  PIXELS 

SPEEDUP 
(pixels/ms) 

GHC  PSC 
anil.jpg  4558225  6.271 15.095

apple_holiday.png  4354560  8.237 17.297
apples.jpg  1705600  5.578 11.796

bon_appetit.png  4181440  7.289 15.38
carbon_emissions.png  2174960  6.926 16.453

corgi.jpeg  5868726  6.339 14.865
crow.jpg  1250000  6.478 13.524

google_notes.png  1155200  7.676 15.542
iphone_11.png  4457800  7.598 16.397

layout.png  1155200  6.851 15.782
mitski.png  4521072  6.76  16.158
noise.png  4207500  7.926 17.637

ohqueue.png  4515840  8.278 17.76
sethg.jpg  635034  10.27 20.877

sf.jpg  1123632  5.185 11.119
siamese.jpg  9216000  5.907 13.469

twinpeaks.jpg  10544352 7.593 16.639
va_districting.tif  2262400  5.652 14.004

zip.png  3153792  6.762 16.359

 

 
 

IMAGE NAME 
 

PIXELS 
SPEEDUP 
(pixels/ms) 

GHC  PSC 

brisbane.jpg  50266112  8.058  17.849 
commencement.jpg  50266112  8.049  17.496 

inauguration.jpg  25690112  8.036  17.34 
machu.jpg  17039360  6.841  15.061 
paris.jpg  13369344  7.534  16.312 

pittsburgh.jpg  20021760 8.727  19.163 
yosemite.jpg  44040192  8.024  17.717 

starry_night_cropped.jpg  178170000  12.917  28.043 

 
 

http://www.cs.cmu.edu/~aada/
https://www.apple.com/
http://danielcoyle.com/wp-content/uploads/apples.jpg
https://www.bonappetit.com/
https://en.wikipedia.org/wiki/Pembroke_Welsh_Corgi#/media/File:Welchcorgipembroke.JPG
https://4czlih24wsr8kyn7z3byy9g1-wpengine.netdna-ssl.com/wp-content/uploads/2019/02/15352222_web1_Mabel-Dec-19-18.jpg
https://cmu.ohqueue.com/#/
https://www.trover.com/d/1ud38-sausalito-california
https://besthqwallpapers.com/download/original/42649
https://www.flickr.com/photos/iamahaque/33220830311
http://www.cs.cmu.edu/~./213/lectures/01-overview.pdf
http://gigapan.com/gigapans/52418
http://gigapan.com/gigapans/49737
http://www.gigapan.com/gigapans/15374
http://www.gigapan.com/gigapans/116906
http://www.gigapan.com/gigapans/136974
http://gigapan.com/gigapans/166353
http://www.gigapan.com/gigapans/124202
https://commons.wikimedia.org/wiki/File:Van_Gogh_-_Starry_Night_-_Google_Art_Project.jpg


Figure 7: Speedup of ColorSpaceTransform on GHC vs. PSC machines 
 

 
Figure 8: Speedup graph for ColorSpaceTransform, measured as C execution time over CUDA. 

 
In Figures 7 and 8, we see that the speedup observed was on magnitude of 5-10x for the GHC 
machines, while speedup was on magnitude of 10-20x for the PSC machines (twice that of GHC). 
Among both medium-sized and larger images alike, these results were roughly consistent, with no 
apparent trend in regards to input size. The exception to this, of course, is starry_night_crop, which 
had over 10x speedup on the GHC machines originally and then nearly 30x speedup on the PSC 
machines. 
 
Another metric we measured was the relative data compression ratio (compression power), the ratio 
between the original uncompressed size of an image and its compressed size. A sizable portion of 
our test data consists of images that have already undergone some form of lossless/lossy 
compression (ex., JPG is a form of lossy compression), and we unfortunately didn’t have access to the 
uncompressed size of original images that would be necessary to make an accurate raw comparison 
between the C and CUDA implementations. Nevertheless, we measured relative data compression 
between cwebp-c and cwebp-cuda, to compare the relative efficacy of our implementation versus 
the reference. 
 
As depicted in Figure 9 below, we saw that the relative compression ratio between the sizes of the 
images produced by the CUDA and C implementations was nearly one-to-one. We found that the 
sizes of the CUDA-compressed images were slightly larger the C-compressed images, on average 
magnitude of approximately 1,000 bytes out of total image sizes of 1 million or more bytes. Since 
compression algorithms aim to reduce images as much as possible, this indicates that the CUDA 



implementation is comparable (barely worst) to the fully-C implementation of the encoding pipeline 
to produce lossless-compressed images.  
 

 
Figure 9: Relative Compression Ratio (CUDA compressed size over C compressed size) 

 
 
Further Analysis 
 
Breakdown of Execution Components 
 
First of all, since our code is all inside one ColorSpaceTransform kernel launch, it is not easy for us 
to break down the timing data within the kernel. There isn't any straightforward way to do so from 
what we found. As such, we determined a way to estimate the runtime of different components: by 
subtraction. For instance, to measure the runtime of GetBestGreenToRed, we would subtract the 
runtime of the kernel with GetBestGreenToRed commented out from the original runtime. Since the 
runtimes cannot be measured directly, these measurements are very approximate. 
 
For the original runtime, we averaged 6 runtime measurements to reduce accumulated error from 
repeated subtraction. For each of the other runtimes, we averaged 3 measurements. 
 
One thing to note is that there are two axes upon which we can measure runtime. The 
GetBestGreenToRed and GetBestGreenRedToBlue functions determine the green_to_red 
and green_to_blue / red_to_blue parameters respectively. They each call respective 
CollectColor*Transforms functions (with * replaced by Red and Blue respectively), as well as 
the CombinedShannonEntropy and PredictionCostSpatial. This is depicted in Figure 10: 
 



 

 

Function  Time (ms) 

CopyTileWithColorTransform  8 

GetBestGreenToRed  78 

GetBestGreenRedToBlue  294 

 

 

Function  Time (ms) 

CopyTileWithColorTransform  8 

CollectColor*Transforms  162 

CombinedShannonEntropy  282 

PredictionCostSpatial  41 

 

Figure 10: Breakdown of kernel execution time, based on different helper functions, and their 
corresponding graphs 

 
One of the most notable observations is that even after parallelizing the reduction operation with 
CUB, which resulted in a noticeable speedup, the CombinedShannonEntropy function continues to 
take a significant proportion of the runtime. 
 
Overhead, Data Transfers, and Speedup Limitations 
 
One timing issue we observed is that the first CUDA kernel launch performed by our program had a 
noticeable overhead of around 70 ms, which was perhaps needed to create an initial CUDA context. 
We know that JIT compilation was not the source of this overhead, since we made sure to 
pre-compile cubin files for each of the target GPU architectures in use, and since when we did force 
JIT compilation to be used with the CUDA_FORCE_PTX_JIT environment variable, we observed an 
additional overhead of around 150 ms. To mitigate this problem, we called the cub::PtxVersion() 
function on initialization, which launches an empty kernel. This eliminated the observed overhead. 
 



As mentioned previously, the biggest overhead incurred in creating the CUDA ColorSpaceTransform 
was from copying the image data to and from the GPU. We found that by implementing a 
higher-level function in CUDA reduces the overhead of copying memory since more operations (i.e., 
more helper routines) is offloaded to the GPU. 
 
One factor that might currently limit our speedup is the fact that the PredictionCostSpatial 
helper function is still run in serial. This is because parallelizing it would require using a scan 
operation (in particular, prefix product), which we have not yet figured out how to do. On the other 
hand, since the function runs a loop for only 16 iterations, the benefit of parallelization is likely to be 
relatively small. 
 
On the other hand, our measurements show that the CombinedShannonEntropy function 
continues to take a relatively large proportion of execution time, even after parallelizing the reduction 
with CUB. We speculate the reason the main reason for this is to its use of log2 (base-2 logarithm), 
which is the only major computation that it performs other than the reductions. 
 
The performance of log2 was important enough that the baseline implementation included in 
libwebp uses several tricks to speed up its execution, including a lookup table for small integer 
arguments. Although we simply used the log2 function provided by CUDA for reasons of simplicity, 
the first thing we would do to speed up our code if we had more time would be to implement some 
of the same techniques used by the baseline implementation. 
 
Beyond this, the main limitation for the speedup is likely the miscellaneous code that needs to be 
executed sequentially, and requires synchronization between threads. For example, we previously 
described how GetBestGreenToRed performs a hill-climbing search to determine the best value of 
the green_to_red parameter; to avoid the problem with performing extraneous work that we 
described previously, all 1024 threads in the block need to perform this search at the same time. 
 
Problem Size Effect 
 
“Different workloads” in regards to our compression project refer to the sizes of the images in our 
data set, which we believed to be important. As previously mentioned, we chose specifically not to 
test our CUDA implementation with smaller image sizes, as the C implementation cwebp canonically 
performs very poorly with smaller images (useless image compression). As previously observed 
(Figure 8, both medium and large-sized sets of images experienced comparable amounts of speedup. 
Depicted in Figure 11 below, we notice only a weak correlation between the speedup and the size of 
the data (in megapixels). We can perform further testing to determine the efficacy of our algorithms 
on even smaller-sized images, to determine the “sweet spot” of where our algorithm can start 
yielding notable speedup gains. 
 
The exception to all of this is starry_night_crop is an interesting data point. Its size is ten times the 
size of the second biggest image, in terms of file size in bytes. Moving forward, if we were to test 
similar-sized images utilizing ColorSpaceTransform, we postulate that we would observe a 
similar boom in speedup. However, the limitation of this effort is the availability of our file storage 
quotas under AFS, so we could not possibly use as many images as large as starry_night_crop. 



 

 
Figure 11: Relationship between speedup and problem size (megapixels) 

 
Choice of Machine 
 
Our choice of target was reasonable, given that the existing implementation written by libwebp 
already took advantage of parallelization techniques for CPUs, such as multithreading and vectorized 
instructions; in this way, the reference implementation is already impressively optimized for 
sequentially running code. This made it a challenge for us to determine viable areas for parallelization 
in order to obtain notable speedup on the GPU.  
 
Nevertheless, by progressively offloading more and more of the transformation stage of the encoding 
onto the GPU, we were able to obtain impressive speedup on both machines.  

 
Conclusion 
 
In the scope of this project, we analyzed the performance of the encoding pipeline in the WebP 
lossless compression algorithm and then investigated several avenues (opportunities) for 
parallelization on the GPU using CUDA. After traversing the encoding pipeline’s call stack, 
implementing both lower and higher-level transformation functions, and benchmarking all of the 
results we found several opportunities for parallelism in some of the helper routines they used to 
transform the original input data, which allowed us to successfully produce great speedup for one of 
the four major transformations.  

 
 
 



References 
 
"Compression Techniques  |  Webp  |  Google Developers". Google Developers, 2019, 
https://developers.google.com/speed/webp/docs/compression. 
 
"RFC 6386 - VP8 Data Format And Decoding Guide". Datatracker.Ietf.Org, 2019, 
https://datatracker.ietf.org/doc/rfc6386/. 
 
 

Images Used 
 
For brevity, we’ve linked the source of our test image files in Figure 2 directly. 
 

Work Breakdown 
 
The total work distribution is approximately 50-50. The table describes each of the major efforts we 
initiated, but we also pair-programmed. Both of us equally contributed to final report and the poster. 
 

Emma  Kevin 

Study WebP pipeline (libwebp documentation, Google Developer guide) 

Set-up project page  Added CUDA to CMake build file 

Determine feasibility of lower-level functions to parallelize  

Implemented the following functions/kernels: 
● SubtractGreenFromRedAndBlue 
● TransformColor 
● CollectColorRedTransforms 
● CollectColorBlueTransforms 

Implemented BundleColorMap function/kernel 

Added wrapper for timing code in lossless_enc_cuda 

Studied compilation system and installed CUDA 
implementation  

Implemented ColorSpaceTransform function/kernel 

Implemented parallel CopyTileWithColorTransform  Implemented ColorSpaceTransform wrapper  

Wrote script to run cwebp in batch mode  Implemented CUB version of CombinedShannonEntropy 

Performed timing analysis on GHC, Bridges machines  Brokedown timing of ColorSpaceTransform 

Create performance tables and graphs  Added timing code in predictor_enc_cuda 

Wrote final project write-up 

Create final project poster 

 
 

https://developers.google.com/speed/webp/docs/compression
https://datatracker.ietf.org/doc/rfc6386/

